
Distributed Middleware Services
Composition and Synthesis Technology

Miklós Maróti, Péter Völgyesi, Gyula Simon
Gábor Karsai and Ákos Lédeczi

Institute for Software Integrated Systems
Vanderbilt University
Box 1829, Station B

Nashville, TN 37235, USA
615-343-7472

{miklos.maroti, peter.volgyesi, gyula.simon,
gabor.karsai, akos.ledeczi}@vanderbilt.edu

Abstract— The highly distributed and resource con-
strained nature of computing in Networked Em-
bedded Systems necessitates an application specific
middleware—a kind of distributed operating system that
provides global services for the application. We pro-
pose to automatically synthesize the middleware from
abstract, platform-independent algorithm models. The
modeling language captures the temporal and compu-
tational aspects of the distributed algorithms in a pro-
gramming language-independent and platform-neutral
way. It supports the specification, composition and ver-
ification of middleware components, and allows the in-
tegration of existing platform-specific components. We
have implemented a proof-of-concept prototype model-
ing environment, and used it to model and generate the
middleware for a structural vibration damping applica-
tion running on an I/O automata-based Java simula-
tor, and for a cooperative acoustic tracking application
running on TinyOS. The proposed formalism allows the
creation of a platform-independent library of middleware
services that can be used to build and synthesize various
application-specific middleware instances.

TABLE OF CONTENTS

1 INTRODUCTION

2 THE NOTION OF ALGORITHM

3 THE I/O AUTOMATA

4 STRUCTURAL MODEL OF I/O AUTOMATA

5 CASE STUDY

6 ACKNOWLEDGEMENT

7 CONCLUSIONS

1. INTRODUCTION

Networked Embedded Systems Technology (NEST) is
becoming an increasingly important field of research
as advances in digital circuitry and Micro ElectroMe-
chanical Systems (MEMS) enable the design and large

0-7803-7231-X/01/$10.00/ c©2002 IEEE

volume fabrication of remarkably compact autonomous
nodes with computation and communication capabili-
ties, one or more sensors and actuators, and a power
supply. These systems are tightly coupled to physical
processes, distributed across a large number of densely
deployed processing nodes (∼100,000s) that have lim-
ited resources and communication capabilities. Each
node has one or more sensors and actuators directly at-
tached to it that interact with the physical process at
the node’s location. Possible applications of NEST in-
clude large-scale active noise control, active flow control
over aircraft wings, micro-satellite constellations, smart
structures and others.

The Smart Dust project [8] at UC Berkeley aims to incor-
porate the requisite sensing, communication, and com-
puting hardware, along with a power supply, in a volume
no more than a few cubic millimeters. The missing ingre-
dient is the middleware and applications layers needed
to harness this revolutionary capability into a complete
system [6].

The highly distributed nature of computing in a NEST
application implies that each node should be equipped
with sophisticated middleware -a kind of distributed op-
erating system that provides global services for the ap-
plications (in addition to the local operating system that
supports local resource management). This middleware
layer is a key ingredient of NEST applications: it en-
capsulates services that are reusable across a number
of specific problems, yet independent of the underlying
hardware infrastructure (which is managed by the local
OS).

The middleware is expected to support various coor-
dination services beyond basic communication proto-
cols. Coordination services range from simple event-
and time-based coordination to complex algorithms for
leader election, spanning tree formation, protocols for
distributed consensus and mutual exclusion, distributed
transactions, group communication services, clock syn-
chronization and others. These services go beyond the

usual capabilities provided by networking protocols. Ad-
ditionally, because of the inherent unreliability of the
nodes and communication links, aspects of fault toler-
ance must also be addressed by the middleware. Because
of resource limitations, a complex, monolithic middle-
ware layer that contains all services for all applications
is not feasible. The middleware layer for NEST appli-
cations needs to be thin, application-specific and high-
performance.

This paper describes the Distributed Services Composi-
tion and Synthesis Technology (DISSECT) environment,
a proof-of-concept prototype of our middleware model-
ing, composition and automatic synthesis technology. It
enables the programming language-neutral specification
of individual middleware services at the algorithm level
in a target platform-independent manner. It allows the
construction of application-specific middleware assem-
blies by hooking up the individual services, while mak-
ing sure that only services with compatible interfaces are
used. Finally, it is able to automatically synthesize the
middleware layer for two different target platforms: one
is our own distributed system simulator with an Asyn-
chronous I/O automaton-based middleware model im-
plemented in Java; the other is a wireless networked
sensor platform running TinyOS, a composable micro
OS implemented in C and supplied by UCB. We have
successfully demonstrated this technology using a struc-
tural vibration-damping problem with 50 nodes on our
simulator and a cooperative acoustic tracking applica-
tion running on the actual wireless sensor network using
10 real nodes. In both cases, the middleware layer was
generated from high-level graphical specifications fully
automatically. The performance was comparable to that
of hand written code.

2. THE NOTION OF ALGORITHM

There are different notions of algorithm. On the one
hand, an algorithm is an intuitive idea that you have
in your head before writing code. The code then im-
plements the algorithm. The same algorithm may be
codified in different programming languages, using dif-
ferent frameworks and libraries, and can run on different
platforms. A framework is a set of constraints on com-
ponents and their interactions, together with a set of
benefits that derive from those constraints. We use dif-
ferent levels of abstraction to describe an algorithm, such
as:

• machine executable code for a particular platform,
• soucre code written in high level programming lan-
guages using different frameworks and libraries,
• executable model under a particular model of compu-
tation,
• input-enabled I/O automaton with nondeterministic
execution order,
• structural I/O automaton representation.

The undeniable success story of Computer Science is
compilation, the generation of machine executable code
from source code and libraries, proving that it is feasible
to abstract the platform from the algorithm specifica-
tion. However, the proliferation of programming lan-
guages and component/communication frameworks ne-
cessitates the repeated implementation of the same al-
gorithms. This just proves that the specification of al-
gorithms at the source code level is rigid and contains
elements that are not part of the algorithm.

A new level of abstraction was introduced to separate the
algorithm from the programming language: executable
algorithm models that support simulation and/or code
generation (see Ptolemy [9]). The models are con-
structed under a model of computation, a set of “laws of
physics” that govern the interaction of components in the
model. The timing and execution order of actions is han-
dled by the model of computation. While Ptolemy allows
the composition of components using different models of
computation, the semantics of the resulting component
is not well defined in some cases.

The modeling of asynchronous distributed algorithms by
I/O automata was proposed by N. Lynch in [1]. I/O au-
tomata are input-enabled, meaning that an automaton
is not able to somehow “prevent” input actions from oc-
curing. Following the optimistic approach to composition
[2], we believe that an automaton shall not only describe
its behavior, but its expectation on the environment, as
well. While the description of an automaton is abstract,
the description of basic transitions is usually given in
a high level programming language, and assumed to be
executed atomically. The I/O automata methodology is
well studied and a large collection of distributed algo-
rithms are expressed and verified in it.

We aim to merge the formalisms of executable models
(programming language-independence, implementabil-
ity), interface automata (optimistic approach to com-
position) and I/O automata (nondeterministic execu-
tion order). Our vision is to abstractly define algo-
rithms that are verifiable, reusable and effectively im-
plementable in a platform-, programming language- and
framework-independent way.

3. THE I/O AUTOMATA

Our modeling language is based on the definition of
I/O automaton, which we will reproduce here.

Definition 1: An I/O automaton A consists of five compo-
nents:

• acts(A), a set of actions which is partitioned into three
disjoint sets: in(A), out(A) and int(A), the sets of input,
output and local actions
• states(A), a nonempty set of states

• start(A), a nonempty subset of states(A), known as the
start states
• trans(A), a state-transition relation, where trans(A) ⊆
states(A) × acts(A) × states(A)

• tasks(A), a task partition, which is an equivalence relation
on out(A) ∪ int(A).

Just like with Finite State Machines (FSM), I/O au-
tomata have a key weakness in their simple flat form:
the number of states and state-transitions can get quite
large even for a moderately complex systems. Such mod-
els quickly become chaotic and incomprehensible when
one tries to understand abstract I/O automata. Indeed,
I/O automata specified as in Definition 1 are not meant
for human consumption. Some structure is lost which is
needed to understand and implement the automaton. It
is interesting to look at the current practice of specify-
ing I/O automata: the informal specifications still have
structure.

The set of states of an I/O automaton A is usually de-
scribed in terms of a list of state variables and their
initial values. If the domains of these state variables are
D1, . . . , Dn, then

states(A) = D1 × · · · × Dn.

The set acts(A) of actions is described in a similar way,
although first it is grouped into logically coherent sub-
sets. Specifically, acts(A) is a disjoint union of action
groups

acts(A) = G1 ∪ · · · ∪ Gm,

and each action group Gi is parameterized: described in
terms of a list of action parameters. If the number of
parameters of Gi is p(i), and the domains of the action
parameters are Di,1, . . . , Di,p(i), then

Gi = Di,1 × · · · × Di,p(i).

The set of state transitions are also grouped into logically
coherent subsets, that is, trans(A) is a disjoint union of
transition groups

trans(A) = T1 ∪ · · · ∪ Tl.

The transition groups are, in turn, described in a semi-
formal programming language. It is not a big sur-
prise that these program fragments read and write state
variables and action parameters. Typical specifications
use conditional and iterational statements, such as the
decide(v)i transition of the Processi I/O automaton
(pp. 205, [1]):

decide(v)i

Precondition:
for all j, 1 ≤ j ≤ n:

val(j) 6= null

v = f(val(1), . . . , val(n))

Effect:
none

and the receive(“bcast”,w)j,i input transition of the
AsynchBcastAcki I/O automaton (pp. 499, [1]):

receive(“bcast”, w)j,i

Effect:
if val = null then

val := w

parent := j

for all k ∈ nbrs − {j} do
add (“bcast”, w) to send(k)

else add “ack” to send(j)

We intend to formally define structured sets, the sets we
use for describing states(A) and acts(A).

Definition 2: Structured sets are defined recursively:

• The domain of basic datatypes are structured sets.
• Finite products of structured sets are structured.
• Disjunct unions of structured sets are structured.
• Finite powers of structured sets are structured.
• The Kleene1 star of structured sets is structured.

We classify the structured sets into five types, called vari-
ables, products, unions, arrays and queues, according to the
above rules, respectively. These compositional operators are
well known in both mathematics and computer science.

To achieve platform and programming language-
independence, we limit the complexity of the specifi-
cation of transition groups as much as possible. Typ-
ically, a specification uses only a limited number of state
variables and action parameters. We took the following
minimalist approach: We call a transition group specifi-
cation simple if it is of the form

transition(arg1, . . . , argn)
Precondition:

cond1(par1, . . . , parn, var1, . . . , varm)
...

condk(par1, . . . , parn, var1, . . . , varm)
Effect:

varm+1 = expr1(par1, . . . , parn, var1, . . . , varm)
...

varm+l = exprl(par1, . . . , parn, var1, . . . , varm)

where par1, . . . , parn are action parameters, var1, . . . , varm

are state variables, cond1, . . . , condk are simple compar-
isons (the comparison relation is either =, <, > or <>,

1the union of all finite powers of a set: {∅} ∪ A ∪ A2 ∪ . . .

and each side is either par1, . . . , parn, var1, . . . , varm or
a constant), and expr1, . . . , exprl are basic expressions
using only basic arithmetic operators.

The use of simple conditions and basic expressions allows
programming language-independence, but we still face
the problem of accessing the state variables and action
parameters in deeply nested structured sets. We use the
notion of data ports to disassemble structured sets into
less complicated structured sets:

Definition 3: Let S be a structured set. A data port P of S

consists of four components:

• domain(P), a structured set of exported elements
• hidden(P), an unstructured set of hidden elements
• select(P), an idempotent mapping of S into itself, that is,
select(P) ◦ select(P) = select(P)

• decomp(P), a bijection between the range of select(P)
and domain(P) × hidden(P).

We say that a data port P can read an element s ∈ S, if
select(P)(s) = s, that is, if s is in the range of select(P).
Reading the data port of a structured set S at an element
s is equivalent to the transition:

readP,s(w), w ∈ domain(P)
Precondition:

select(P)(s) = s

decomp(P)(s) ∈ {w} × hidden(P).

Writing to the data port is always possible: it first brings
the current state of the automaton into the range of
select(P), then calculates the hidden component of the
state, and finally it composes the new state from the new
domain value and the hidden state. More precisely, writ-
ing to the data port of a structured set S at an element
s is equivalent to the transition:

writeP,s(w), w ∈ domain(P)
Effect:

s := select(P)(s)
(v, h) := map(P)(s)
s := map(P)−1(w, h).

As an example, consider the following I/O automaton A:

States:
v, integer
h, real number
c, strign

Transitions:
read(w)

Precondition:
c = “hello”
w = v

Effect:
none

write(w)
Effect:

c := “hello”
v := w

The read(w) and write(w) transitions correspond to
readP,(v,h,c)(w) and writeP (w, (v, h, c)), respectively, P

is the data port defined as

• domain(P) = { the set of all integers }
• hidden(P) = { the set of all real numbers }
• select(P) maps (v, h, c) ∈ states(A) to (v, h, “hello”)
• decomp(P) maps an element (v, h, “hello”) of the
range of select(P) to (v, h).

Now we can define simple state-transition relations. This
definition differs from that of simple transition groups in
that it reads and writes the action parameters and state
variables through data ports.

Definition 4: Let A be an I/O automaton. We call a set T ⊆
states(A)× trans(A)× states(A) a simple state-transition
relation, if it is described by a simple transition group of the
form:

transition(action)
Precondition:

readP1,action(arg1)
...

readPn,action(argn)
readPn+1,state(var1)

...
readPn+m,state(varm)
cond1(par1, . . . , parn, var1, . . . , varm)

...
condk(par1, . . . , parn, var1, . . . , varm)

Effect:
writePn+m+1,state(expr1(par1, . . . , parn, var1, . . . , varm))

...
writePn+m+k,state(exprl(par1, . . . , parn, var1, . . . , varm))

where P1, . . . , Pn are dataports of acts(A), Pn+1, . . . , Pn+m+k

are data ports of states(A), and cond1, . . . , condk and
expr1, . . . , exprl are simple conditions and basic expres-
sions.

4. STRUCTURAL MODEL OF I/O AUTOMATA

We will introduce basic I/O automata serving as building
blocks. Then define compositional rules to obtain com-

plex automata. To support composition (through data
ports), we need to extend the definition of I/O automata.
We call the new concept structural I/O automaton.

Definition 5: A structural I/O automaton A consists of eight
components:

• acts(A), a structured set of actions

• states(A), a structured set of states

• start(A), a nonempty subset of states(A), known as the
start states

• trans(A), a state-transition relation, where trans(A) ⊆
states(A) × acts(A) × states(A)

• in(A), a set of data ports of the set acts(A)

• out(A), a set of data ports of the set acts(A)

• data(A), a set of data ports of the set states(A)

• tasks(A), a task partition on acts(A).

Notice, that we use structured sets for actions and states,
the partition of actions into input and output actions is
replaced with two list of data ports. The biggest change
is that we have introduced a new kind of interaction
mechanism: a list of data ports of states(A) which allows
direct manipulation of states of the automaton. This
“feature” is needed by the most simple I/O automaton:
the Variable.

The Variable

The variable is the most basic I/O automaton. It has no
computational capabilities, it just stores a single value
of a simple datatype T . Here is the definition:

• acts(V ariableT) = ∅
• states(V ariableT) = T

• start(V ariabltT) = {an element of T}
• trans(V ariableT) = ∅
• in(V ariableT) = {}
• out(V ariableT) = {}
• data(V ariableT) = {T}
• tasks(V ariableT) = {}.

The Activator

The activator operation allows the introduction of a new
simple state-transition relation into a structured I/O au-
tomata. The new transitions must attach to an existing
or a newly created action data port, and only to existing
state data ports. The formal definition of the activated
automata B of A is as follows:

• acts(B) = acts(A) ∪ N

• states(B) = states(A)
• start(B) = start(A)
• trans(B) = trans(A) ∪ {simple transition relation}
• in(B) = in(A) ∪ I

• out(B) = out(A) ∪ O

• data(B) = data(A)

• tasks(B) = tasks(A) ∪ {simple transition relation}

where N is a new set of actions, P is the data port for N

in acts(B), P1, . . . , Pn be data ports from in(B)∪out(B),
Pn+1, . . . , Pn+m+k are data ports from data(A), and
the conditions of Definition 4 are statisfied. Depend-
ing whether we wish to export the new action through a
data port, the pair (I ,O) of sets is either (∅, ∅), (∅, P) or
(P, ∅).

The Product

The product operation allows the composition of a fi-
nite list of structured I/O automata into one. This
corresponds to the usual composition of I/O automata
in [1]. Let A1, . . . , An be structural I/O automata, and
R be a relation from the set in(A1) ∪ · · · ∪ in(An) to
out(A1)∪ · · · ∪ out(An). The product A = A1 × · · · ×An

is a structural I/O automata defined as follows:

• acts(A) = acts(A1) ∪ · · · ∪ acts(An)
• states(A) = states(A1) × · · · × states(An)
• start(A) = start(A1) × · · · × start(An)
• trans(A) =

⋃
{Box(states(A), i, s) × {a} ×

Box(states(A), i, t) : (s, a, t) ∈ trans(Ai)}
• in(A) = in(A1) ∪ · · · ∪ in(An) − {the domain of R}
• out(A) = out(A1) ∪ · · · ∪ out(An)
• data(A) = data(A1) ∪ · · · ∪ data(An)
• tasks(A) = {tasks(A1), . . . , tasks(An)}

Where

Box(X1 × · · · × Xn, i, c) =

{〈a1, . . . , ai−1, c, ai+1, . . . , an〉 :

a1 ∈ X1, . . . , ai−1 ∈ Xi−1, ai+1 ∈ Xi+1, . . . , an ∈ Xn}

We impose certain restrictions on the automata that may
be composed using the product. The relation R speci-
fies the interconnections from output data ports to input
data ports. We require that for all pairs (P, Q) ∈ R of
data ports, domain(P) = domain(Q).

The Union

The union operation allows the exclusive composition
of a a finite list of structural I/O automata into one.
Let A1, . . . , An be structural I/O automata. The union
A = A1 ∪ · · · ∪ An is defined as follows:

• acts(A) = acts(A1) ∪ · · · ∪ acts(An)
• states(A) = states(A1) ∪ · · · ∪ states(An)
• start(A) = start(A1) ∪ · · · ∪ start(An)
• trans(A) = trans(A1) ∪ · · · ∪ trans(An)
• in(A) = in(A1) ∪ · · · ∪ in(An)
• out(A) = out(A1) ∪ · · · ∪ out(An)
• data(A) = data(A1) ∪ · · · ∪ data(An)
• tasks(A) = {tasks(A1), . . . , tasks(An)}

The Array

Conceptually, the array is a shorthand notation of the
repeated use of product operation. However, there are
substantial differences, because now it is possible to ad-
dress individual automata of the array. Let A be a struc-
tural I/O automaton, and n be a natural number. The
n-th power An of A is a structural I/O automaton de-
fined as:

• acts(An) = {1, . . . , n} × acts(A)
• states(An) = states(A)n

• start(An) = start(A)n

• trans(An) =
⋃
{Box(states(A), i, s) × {a} ×

Box(states(A), i, t) : (s, a, t) ∈ trans(A)}
• in(An) = {1, . . . , n} × in(A)
• out(An) = {1, . . . , n} × in(A)
• data(An) = data(A) ∪ {1, . . . , n} × data(A)
• tasks(An) = {1, . . . , n} × tasks(A)

Observe, that the number of input and output action
data ports has been multiplied by n. This is because
we can “send” an action to each of the n-many com-
ponents. The state data ports are even more complex.
Most notably, we allow the reading and writing of all
embedded state data ports simultaneously. “Reading”
means checking if all copies have the same state in the
observable domain (see Definition 3), and then returning
the common value. “Writing” means setting the state
of each copies to a common value. One of the reasons
behind the complexity of Definition 3 is to allow such
constructs. This rule allows the generation of code for
“embedded” transitions that use for-loops in their pre-
condition and/or effect.

5. CASE STUDY

The Distributed Services Composition and Synthesis
Technology (DISSECT) tool is a prototype design en-
vironment for middleware development. DISSECT is
implemented using the Generic Modeling Environment
(GME), a configurable toolkit for creating domain-
specific modeling and program synthesis environments
[Computer 2001 nov]. The configuration is accomplished
through a metamodel specifying the modeling language
of the application domain. It contains all the syntac-
tic, semantic, and presentation information regarding
the domain - which concepts will be used to construct
models, what relationships may exist among those con-
cepts, how the concepts may be organized and viewed
by the modeler, and rules governing the construction of
models. The modeling language defines the family of
models that can be created using the resultant modeling
environment.

We created the DISSECT metamodel that implements
the concepts described earlier in the paper. The result-
ing environment will be now presented using an example
application. We have designed and implemented a Co-

operative Acoustic Tracking (CAT) applications running
on the UC Berkeley mote platform and the TinyOS op-
erating system. There are two kinds of motes in this sys-
tem. A single mote acting as an active tag has a buzzer
that can emit a 4KHz sound under program control. N
additional motes act as the trackers. Each has a micro-
phone and a 4KHz hardware bandpass filter attached to
it. For simplicity, the tracker motes are arranged along
a line simulating, for example, cooperative tracking on a
road or a hallway inside a building.

The active tag periodically broadcast a radio message
announcing its intention to buzz. Immediately following
the radio message, it buzzes for a half a second. The
trackers who successfully received the broadcast start
measuring the time of flight of the sound. Those motes
whose microphones picked up the sound, compute the
distance to the tag from the measured time. To decrease
the effects of noise, jitter and other sources of error a
simple averaging algorithm is also used.

The single middleware service in this simple application
is called Track Table. Its task is to maintain a table
at each of the trackers containing the latest measure-
ment results of all the trackers. It is accomplished by
listening to messages from neighboring nodes, updating
their own table if the result is newer than what they
already have and broadcasting their entire table period-
ically. The DISSECT model of the Track Table middle-
ware service is shown in Figure 1.

The figure shows a screenshot of the DISSECT environ-
ment. The lower right hand window shows the hierar-
chical structure of the model in a tree-like fashion. The
upper right hand window shows the textual attributes
of the selected model element, in this case, the guard
conditions and actions (expressions) of the update tran-
sition in the DDStore component (described later). The
two main graphical windows show the top level view of
the Track Table structural IO automaton (top window)
and its most important component, the DDstore (for dis-
tributed datastore) that maintains the actual data struc-
ture of the measurement results (bottom window).

The Track Table service is initiated by receiving a mes-
sage through the rcv component. (Note that gray boxes
indicate existing operating systems components. Only
the interfaces of these are modeled since no code gener-
ation is needed for them.) The message can be either
from the actual local measurement or a neighbors ta-
ble of results. The format of the two messages differ,
so the unpack component extracts the information and
provides it in a uniform format to the DDStore compo-
nent.

The DDStore component is not a single component, it is
replicated N times, where N is the number of nodes in

Figure 1. Track Table middleware service for acoustic tracking

the system. (For scalability, this could be reduced to the
size of the neighborhood where the active tag is actually
audible.) The inside of the DDStore component in the
bottom window shows the newentry dataport. It is a
structure of three data values: strength stores the actual
measurement, counter is a timestamp, while nodeID is
the id of the node where the measurement was made.
This latter acts as the index in the DDStore; this is
what determines which DDStore instance the given data
belongs to.

The update transition is the heart of the DDStore com-
ponent. Its guard conditions and actions (expression)
are partially shown in the upper right hand window.
The guard conditions check whether the new entry is
indeed newer than the currently stored one and whether
the index is matching. If these conditions are met and
the transition gets executed, the entry state will store
the new data. The assignment is done field by field.
The update transition also sends the new data out for
packing and broadcasting it to the neighbors. Aging and

broadcasting are done with the help of the clock OS com-
ponent. The Display component shows some debugging
information on the three LEDs of the motes.

The code generator that was written for DISSECT
targeting the motes and TinyOS takes these graph-
ical models and generates the middleware layer au-
tomatically including interfacing with the operat-
ing system. Note that the same DISSECT envi-
ronment is used to generate the middleware layer
of SIESTA, our own simulator for distributed con-
trol applications for structural vibration damping
(http://www.isis.vanderbilt.edu/projects/nest/
downloads.asp). Of course, the code generator is differ-
ent from the TinyOS one. SIESTA is implemented in
Java and uses a simplified IO automaton-based middle-
ware model. Middleware services captured and automat-
ically synthesized for those kinds of applications include
message routing and broadcast.

6. ACKNOWLEDGEMENT

The DARPA IXO NEST program provided support for
the work described in this paper.

7. CONCLUSIONS

We have presented a modeling language and a support-
ing graphical environment for the modeling and auto-
matic synthesis of distributed middleware services. The
same language and environment is capable of generating
the middleware layer for two different hardware plat-
forms running different models of computation imple-
mented in two different programming languages. Fur-
thermore, only assignments, i.e. actions, and conditional
expressions, i.e. guard conditions, are captured textu-
ally. Finally, the environment is intuitive and relatively
easy to use.

While this clearly demonstrates the promise of this tech-
nology, a lot of research is still to be done. Middleware
service composition needs better support. Verification
of interface models against the actual implementation in
case of black box components (e.g. existing hand-written
code) or against implementation models in case of white
box components, are also open problems.

REFERENCES

[1] N.A. Lynch, “Distributed Algorithms”, Morgan Kauf-
mann Publishers, 1996.

[2] L. de Alfaro, T.A. Henzinger, “Interface Automata”,
Proceedings of the Ninth Annual Symposium on Foun-
dations of Software Engineering (FSE), ACM Press,
2001, pp. 109-120.

[3] T.A. Henzinger, “Design and Verification of Embed-
ded Systems”, Cray Distinguished Lecture, University
of Minnesota, September 2001.

[4] T.A. Henzinger, “From Models to Code: The Missing
Link in Embedded Software”, Fifth International Con-
ference on Hybrid Systems: Computation and Control
(HSCC), March 2002, Stanford, California.

[5] E.A. Lee, “What’s Ahead for Embedded Software?”,
IEEE Computer, September 2000, pp. 18-26.

[6] J.M. Kahn, R.H. Katz and K.S.J. Pister, “Next Cen-
tury Challenges: Mobile Networking for Smart Dust”
ACM/IEEE Intl. Conf. on Mobile Computing and Net-
working (MobiCom 99), Seattle, WA, August 17-19,
1999.

[7] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nord-
strom, J. Sprinkle and G. Karsai, “Composing Domain-
Specific Design Environments”, Computer, pp. 44-51,
November, 2001.

[8] Smart Dust project, “Autonomous sensing and commu-
nication in a cubic millimeter”
http://robotics.eecs.berkeley.edu/∼pister/SmartDust/

[9] Ptolemy project, “Heterogeneous modeling and design”
http://ptolemy.eecs.berkeley.edu/

